

miREIA miRNA Enzyme Immunoassay

microRNAs for Diagnostics in Cardiovascular Disease

microRNAs (miRNAs) are a class of single-stranded non-coding RNA molecules with a length of 19-23 nucleotides. They play a role in negative post-transcriptional regulation by binding to complementary sequences on mRNA and blocking translation into protein. miRNA not only regulate functions in the healthy heart but also play a role in mechanisms of cardiovascular disease.

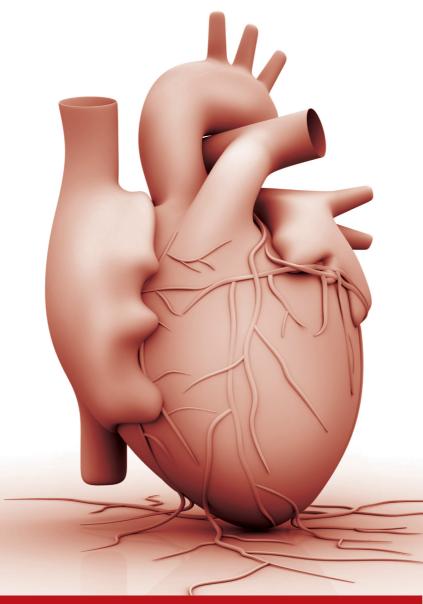
miRNA can be released into biological fluids, including blood, from dying cells, such as necrotic cardiomyocytes following AMI, or actively secreted from living cells under stimulation.

miRNA show a high degree of stability in circulation and withstand conditions such as long-term storage, multiple freeze/thaw cycles and different pH, which makes them ideal biomarkers.

ROBUST • ELISA platform • No reverse transcription • No amplification

· 2-hours assay

Circulating microRNAs associated with the diagnosis of various CVDs


Chronic heart failure

miRNA	Direction of alteration	Value of biomarker	References
miR-22	Increased	Diagnostic	5
miR-30c	Decreased	Diagnostic	6
miR-92b	Increased	Diagnostic	5
miR-107	Decreased	Diagnostic	7
miR-122	Increased	Diagnostic	8
miR-126	Increased	Prognostic	11
miR-139	Decreased	Diagnostic	7
miR-142-5p	Decreased	Diagnostic	7
miR-146a	Decreased	Diagnostic	6
miR-183-3p	Decreased	Diagnostic	9
miR-190a	Decreased	Diagnostic	9
miR-193b-3p	Decreased	Diagnostic	9
miR-193b-5p	Decreased	Diagnostic	9
miR-203	Decreased	Diagnostic	10
miR-210	Increased	Diagnostic	10
miR-211-5p	Decreased	Diagnostic	9
miR-221	Decreased	Diagnostic	6
miR-320a	Increased	Diagnostic	5
miR-328	Decreased	Diagnostic	6
miR-375	Decreased	Diagnostic	6
	Increased	Diagnostic	10
miR-423-5p	Increased	Diagnostic	5
miR-494	Decreased	Diagnostic	9
miR-508-5p	Increased	Prognostic	11
miR-520d-5p	Increased	Diagnostic	8
miR-558	Decreased	Diagnostic	8
miR-671-5p	Increased	Diagnostic	9
miR-1180	Increased	Diagnostic	10
miR-1233	Increased	Diagnostic	9
miR-1908	Increased	Diagnostic	10

Coronary artery disease

miRNA	Direction of alteration compared with controls	Value of biomarker	References
miR-17	Decreased	Diagnostics	31
miR-19a	Decreased	Diagnostics	32
miR-29a	Decreased	Diagnostics	32
miR-30e-5p	Decreased	Diagnostics	32
miR-126	Decreased	Diagnostics	31
miR-133	Increased	Diagnostics	31
miR-145	Decreased	Diagnostics	31, 32
miR-146	Increased	Diagnostic/ Prognostic	33
miR-150	Decreased	Diagnostics	32
miR-155	Decreased	Diagnostics	32
miR-182	Increased	Diagnostics	34
miR-208a	Increased	Diagnostics	31
miR-221	Increased	Diagnostics	35
miR-222	Increased	Diagnostics	32
miR-342	Decreased	Diagnostics	32
miR-378	Decreased	Diagnostics	32
miR-484	Decreased	Diagnostics	32

Stable angina pectoris			
miRNA	Direction of alteration compared with controls	Value of biomarker	References
mR-1	Increased	Diagnostic	36
miR-126	Decreased	Diagnostic	36
miR-133	Increased	Diagnostic	31
miR-147	Decreased	Diagnostic	37
miR-199a	Decreased in future cardiovascular events	Prognostic	38
miR-485-3p	Increased	Diagnostic	36
		J	

Unstable angina pectoris

miRNA	Direction of alteration compared with stable angina pectoris and controls	Value of biomarker	References
miR-21	Increased	Diagnostic	39
miR-25	Increased	Diagnostic	39
miR-92a	Decreased	Diagnostic	39
miR-106b	Increased	Diagnostic	39
miR-126	Increased	Diagnostic	39
miR-590-5p	Increased	Diagnostic	39

miRNA

miR-1

miR-21-5 miR-26a miR-30a miR-92a miR-122 miR-126miR-133a miR-150miR-191-

miR-208

miR-328 mir-375 miR-423 miR-486 miR-499

miRNA

miR-18amiR-26b miR-27a miR-30b miR-30e miR-103 miR-106a miR-142miR-199a miR-342 miR-423miR-499 miR-652

miRNA

miR-1 miR-26b miR-29a miR-30d miR-30e miR-92a miR-145miR-208 miR-483 miR-499 miR-1202

Myocardial infarction

	Direction of alteration compared with controls	Value of biomarker	References
	Increased	Diagnostic/ Prognostic	15, 16, 17, 18
5p	Increased	Diagnostic	19
a-5p	Decreased	Diagnostic	20
а	Increased	Diagnostic	21
а	Increased	Diagnostic	22
2	Decreased	Diagnostic	23
5-3p	Decreased	Diagnostic	20
a	Increased	Diagnostic	16, 18, 19, 24, 25, 26
)-3p	Increased	Diagnostic	20
-5p	Decreased	Diagnostic	20
8a/b	Increased	Diagnostic/ Prognostic	4, 16, 28, 29
8	Increased	Diagnostic	24
	Decreased	Diagnostic	23
3-5p	Increased	Diagnostic	19
6-3p	Increased	Diagnostics	20
9	Increased	Diagnostics	4, 16, 29, 30

Acute heart failure

	Direction of alteration	Value of biomarker	References
-5p	Decreased	Diagnostic/Prognostic	1
o-5p	Decreased	Diagnostic	1
a-3p	Decreased	Diagnostic	1
b	Decreased	Diagnostic	2
e-5p	Decreased	Diagnostic	1
5	Decreased	Diagnostic	2
Sa-5p	Decreased	Diagnostic	1
2-3p	Decreased	Diagnostic	2
a-3p	Decreased	Diagnostic	1
2-3p	Decreased	Diagnostic	2
3-5p	Increased	Diagnostic	3
9	Increased	Diagnostic	4
2-3p	Decreased	Diagnostic/Prognostic	1

Circulating microRNAs associated with the response to therapy in heart failure patients

	Direction of alteration compared with controls	References
	Increased	10
o-5p	Decreased	12
a-3p	Decreased	12
d	Increased	13
e-5p	Decreased	12
a-3p	Decreased	12
5-5p	Decreased	10
8a/208b	Increased	10
3-3p	Increased	14
9	Increased	10
)2	Increased	14

REFERENCES

- 1. Ovchinnikova, Ekaterina S., et al. Signature of circulating microRNAs in patients with acute heart failure. European journal of heart failure 18.4 (2016): 414-423.
- 2. Ellis, Katrina L., et al. Circulating microRNAs as candidate markers to distinguish heart failure in breathless patients. European journal of heart failure 15.10 (2013): 1138-1147.
- 3. Tijsen, Anke J., et al. MiR423-5p as a circulating biomarker for heart failure. Circulation research 106.6 (2010): 1035-1039.
- 4. Corsten, Maarten F., et al. Circulating MicroRNA-208b and MicroRNA-499 reflect myocardial damage in cardiovascular disease. Circulation: Genomic and Precision Medicine (2010): CIRCGENETICS-110.
- 5. Goren, Yaron, et al. Serum levels of microRNAs in patients with heart failure. European journal of heart failure 14.2 (2012): 147-154.
- 6. Meder, Benjamin, et al. MicroRNA signatures in total peripheral blood as novel biomarkers for acute myocardial infarction. Basic research in cardiology 106.1 (2011): 13-23.
- 7. Voellenkle, Christine, et al. MicroRNA signatures in peripheral blood mononuclear cells of chronic heart failure patients. Physiological genomics 42.3 (2010): 420-426.
- 8. Vogel, Britta, et al. Multivariate miRNA signatures as biomarkers for non-ischaemic systolic heart failure. European heart journal34.36 (2013): 2812-2823.
- 9. Wong, Lee Lee, et al. Circulating microRNAs in heart failure with reduced and preserved left ventricular ejection fraction. European journal of heart failure 17.4 (2015): 393-404.
- 10. Akat, Kemal Marc, et al. Comparative RNA-sequencing analysis of myocardial and circulating small RNAs in human heart failure and their utility as biomarkers. Proceedings of the National Academy of Sciences 111.30 (2014): 11151-11156.
- 11. Qiang, Liu, et al. Expression of miR-126 and miR-508-5p in endothelial progenitor cells is associated with the prognosis of chronic heart failure patients. International journal of cardiology168.3 (2013): 2082-2088.
- 12. Marfella, Raffaele, et al. Circulating microRNA changes in heart failure patients treated with cardiac resynchronization therapy: responders vs. non-responders. European journal of heart failure 15.11 (2013): 1277-1288.
- 13. Melman, Yonathan F., et al. Circulating MicroRNA-30d is associated with response to cardiac resynchronization therapy in heart failure and regulates cardiomyocyte apoptosis: a translational pilot study. Circulation (2015): CIRCULATIONAHA-114.
- 14. Morley-Smith, Andrew C., et al. Circulating microRNAs for predicting and monitoring response to mechanical circulatory support from a left ventricular assist device. European journal of heart failure 16.8 (2014): 871-879.
- 15. Ai, Jing, et al. Circulating microRNA-1 as a potential novel biomarker for acute myocardial infarction. Biochemical and biophysical research communications 391.1 (2010): 73-77.
- 16. Wang, Guo-Kun, et al. Circulating microRNA: a novel potential biomarker for early diagnosis of acute myocardial infarction in humans. European heart journal 31.6 (2010): 659-666.
- 17. Gidlöf, Olof, et al. Circulating cardio-enriched microRNAs are associated with long-term prognosis following myocardial infarction. BMC cardiovascular disorders 13.1 (2013): 12.

 Gidlöf, Olof, et al. Cardiospecific microRNA plasma levels correlate with troponin and cardiac function in patients with ST elevation myocardial infarction, are selectively dependent on renal elimination, and can be detected in urine samples. Cardiology 118.4 (2011): 217-226.

- 19. Olivieri, Fabiola, et al. Diagnostic potential of circulating miR-499-5p in elderly patients with acute non ST-elevation myocardial infarction. International journal of cardiology 167.2 (2013): 531-536.
- 20. Hsu, An, et al. Systemic approach to identify serum microRNAs as potential biomarkers for acute myocardial infarction. BioMed research international 2014 (2014).
- 21. Long, Guangwen, et al. Circulating miR-30a, miR-195 and let-7b associated with acute myocardial infarction. PloS one 7.12 (2012): e50926.
- 22. De Rosa, Salvatore, et al. Transcoronary Concentration Gradients of Circulating MicroRNAsClinical Perspective. Circulation 124.18 (2011): 1936-1944.
- 23. D'alessandra, Yuri, et al. Circulating microRNAs are new and sensitive biomarkers of myocardial infarction. European heart journal 31.22 (2010): 2765-2773.
- 24. Wang, Rongrong, et al. Circulating microRNAs are promising novel biomarkers of acute myocardial infarction. Internal Medicine 50.17 (2011): 1789-1795.
- 25. Li, Ying-Qing, et al. Comparing the diagnostic values of circulating microRNAs and cardiac troponin T in patients with acute myocardial infarction. Clinics 68.1 (2013): 75-80.
- 26. Peng, Liu, et al. Clinical impact of circulating miR-133, miR-1291 and miR-663b in plasma of patients with acute myocardial infarction. Diagnostic pathology 9.1 (2014): 89.
- 28. Widera, Christian, et al. Diagnostic and prognostic impact of six circulating microRNAs in acute coronary syndrome. Journal of molecular and cellular cardiology 51.5 (2011): 872-875.
- 29. Devaux, Yvan, et al. Use of circulating microRNAs to diagnose acute myocardial infarction. Clinical chemistry 58.3 (2012): 559-567.
- 30. Adachi, Taichi, et al. Plasma microRNA 499 as a biomarker of acute myocardial infarction. Clinical chemistry 56.7 (2010): 1183-1185.
- 31. Fichtlscherer, Stephan, et al. Circulating microRNAs in patients with coronary artery diseasenovelty and significance. Circulation research 107.5 (2010): 677-684.
- 32. Weber, Martina, et al. MicroRNA expression profile in CAD patients and the impact of ACEI/ARB. Cardiology research and practice 2011 (2011).
- 33. Takahashi, Yuji, et al. Expression of miR-146a/b is associated with the Toll-like receptor 4 signal in coronary artery disease: effect of renin-angiotensin system blockade and statins on miRNA-146a/b and Toll-like receptor 4 levels. Clinical Science119.9 (2010): 395-405.
- 34. Taurino, Chiara, et al. Gene expression profiling in whole blood of patients with coronary artery disease. Clinical science 119.8 (2010): 335-343.
- 35. Minami, Y, et al. Effect of atorvastatin on microRNA 221/222 expression in endothelial progenitor cells obtained from patients with coronary artery disease. European journal of clinical investigation 39.5 (2009): 359-367.
- 36. D'Alessandra, Yuri, et al. Diagnostic potential of plasmatic MicroRNA signatures in stable and unstable angina. PloS one8.11 (2013): e80345.
- 37. Hoekstra, Menno, et al. The peripheral blood mononuclear cell microRNA signature of coronary artery disease. Biochemical and biophysical research communications 394.3 (2010): 792-797.
- 38. Jansen, Felix, et al. MicroRNA expression in circulating microvesicles predicts cardiovascular events in patients with coronary artery disease. Journal of the American Heart Association 3.6 (2014): e001249.
- 39. Ren, Jingyi, et al. Signature of circulating microRNAs as potential biomarkers in vulnerable coronary artery disease. PloS one 8.12 (2013): e80738.

Contact Information

BioVendor – Laboratorni medicina a.s.

Karasek 1767/1, 621 00 Brno, Czech Republic Phone: +420 549 124 185, Fax: +420 549 211 460 E-mail: info@biovendor.com

BioVendor GmbH

Otto-Hahn-Straße 16, 34123 Kassel, Germany Phone: +49 (0)561 861 509 33, Fax: +49 (0)561 861 509 34 E-mail: infoEU@biovendor.com

BioVendor GesmbH

Gaudenzdorfer Gürtel 43-45, 1120 Vienna, Austria Phone: +43 1 890 9025, Fax: +43 1 890 5163 E-mail: infoAustria@biovendor.com

BioVendor, LLC

128 Bingham Rd., Suite 1300, Asheville, NC 28806, USA Phone: +1-800-404-7807, Phone: +1-828-575-9250 Fax: +1-828-575-9251, E-mail: infoUSA@biovendor.com Date of issue Ferbuary 2018

Oxford Biosystems Ltd

184B Park House, Park Drive, Milton Park, Abingdon, Oxfordshire OX14 4SR, United Kingdom Phone: +44 (0)1235 431390 E-mail: sales@oxfordbiosystems.com